

 Navigation

 	
 index

 	
 next |

 	pyramid_cron 0.4

Pyramid Cron

Scott Torborg - Cart Logic [http://www.cartlogic.com]

Provides the ability to register simple tasks (callback functions) for
scheduled execution with a cron-like syntax.

Why it’s better than a typical task queue like Celery, Resque, etc:

	No user permissions to worry about: everything is run inside a web request,
so the task has all the same permissions as your web app.

	Very simple setup, no additional daemons required.

	The API follows Pyramid idioms.

Why it’s worse:

	It’s not well suited to long-running tasks: everything is run inside a web
request.

	It does not distribute jobs across workers.

	It does not allow for prioritization of jobs, or have any support for
non-synchronous tasks.

Contents

	Quick Start
	Install

	Integrate with a Pyramid App

	Register a Task

	Request Scope Caveats

	Logging

	API Reference

	Contributing

Indices and Tables

	Index

	Module Index

 Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyramid_cron 0.4

Quick Start

Install

Install with pip:

$ pip install pyramid_cron

For each web app which uses pyramid_cron, you’ll need to fire the cron handler
from a whitelisted IP once per minute. An easy way to do this is by adding a
cron job on the app server:

* * * * * curl -o /dev/null http://localhost/cron

Integrate with a Pyramid App

Include pyramid_cron, by calling config.include('pyramid_cron') or
adding pyramid_cron to pyramid.includes.

Register a Task

Register at least one task, using the config.add_cron_task() directive.
You can also pass a dotted string (e.g. myapp.tasks.some_task) which
will be resolved relative to the calling module.

Tasks are functions which accept a single system argument. system is a
dict with two keys: request and registry, both of which refer to the
Pyramid objects of that name.

def my_task(system):
 registry = system['registry']
 request = system['request']
 # do stuff

Run every 3 hours.
config.add_cron_task(my_task, hour=(0, 24, 3))

See API Reference for more details.

Request Scope Caveats

All tasks that are run during a given minute will be run in the scope of the
same request. This may impose constraints on your tasks, for example:

	Depending on your transaction management infrastructure, tasks will share the
same SQL session.

	An accumulation of slow tasks may lead to an abnormally long HTTP request,
tying up resources or exceeding your webserver’s timeout threshold.

	Ideally, tasks which are on the slower side should be staggered so that
they’re unlikely to run at the same time.

Logging

Information about task execution (and timing) is logged to the pyramid_cron
handler. If you wish to record it, you should configure logging explicitly for
that handler in your app.

 Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyramid_cron 0.4

API Reference

	
pyramid_cron.add_cron_task(config, f, min='*', hour='*', day='*', month='*', dow='*')[source]

	Register a function for execution by the scheduler.

Task functions must have the following signature:

def mytask(system):
 request = system['request']
 registry = system['registry']
 # do stuff

Additional keys may be added in the future: the single-arg signature
ensures that task functions will be forward-compatible.

In addition to the callback function, you can specify a schedule, using a
cron-like syntax. For the time periods of min, hour, day,
month, and dow (day of week), you can specify an integer, a set of
integers, or the ‘*’ wildcard character. The default argument is ‘*’. Hours
are specified in 24-hour time.

For example, this will run the task every day, at 2:00:

config.add_cron_task(..., hour=2)

This will run the task every day at 2:00, 10:00, and 18:00:

config.add_cron_task(..., hour=[2, 10, 18])

To run the task ‘every 2 hours’, you can use range():

config.add_cron_task(..., hour=range(0, 24, 2))

	Parameters:	
	f – The function to execute. Task functions must have accept a single
argument, which will be a system dict containing keys for the
Pyramid request and registry.

	min – Specify which minutes to run the task.

	hour – Specify which hours to run the task.

	day – Specify which days to run the task.

	month – Specify which months to run the task.

	dow – Specify which days of the week to run the task.

 Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	pyramid_cron 0.4

Contributing

Patches and suggestions are strongly encouraged! GitHub pull requests are
preferred, but other mechanisms of feedback are welcome.

pyramid_cron has a comprehensive test suite with 100% line and branch coverage, as reported by the excellent coverage module. To run the tests, simply run in the top level of the repo:

$ tox

This will also ensure that the Sphinx documentation builds correctly, and that
there are no PEP8 [http://www.python.org/dev/peps/pep-0008/] or Pyflakes [http://pypi.python.org/pypi/pyflakes] warnings in the codebase.

Any pull requests should preserve all of these things.

 Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	pyramid_cron 0.4

Index

 A

A

 	

 	add_cron_task() (in module pyramid_cron)

 Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		pyramid_cron 0.4 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

_modules/pyramid_cron.html

 Navigation

 		
 index

 		pyramid_cron 0.4 »

 		Module code »

 Source code for pyramid_cron

from __future__ import absolute_import, print_function, division

import logging
import socket
from datetime import datetime

log = logging.getLogger(__name__)

class Task(object):

 def __init__(self, f, min, hour, day, month, dow):
 self.f = f

 class Wildcard(set):

 def __contains__(self, other):
 return True

 wildcard = Wildcard()

 def conv(val):
 if val == '*':
 return wildcard
 if isinstance(val, (int, long)):
 return set([val])
 if not isinstance(val, set):
 val = set(val)
 return val

 self.min = conv(min)
 self.hour = conv(hour)
 self.day = conv(day)
 self.month = conv(month)
 self.dow = conv(dow)

 def check(self, t):
 return ((t.minute in self.min) and
 (t.hour in self.hour) and
 (t.day in self.day) and
 (t.month in self.month) and
 (t.weekday() in self.dow))

 def go(self, request):
 log.info("%s start", self.f.__name__)
 self.f(dict(request=request, registry=request.registry))
 log.info("%s end", self.f.__name__)

[docs]def add_cron_task(config, f, min='*', hour='*', day='*', month='*', dow='*'):
 """
 Register a function for execution by the scheduler.

 Task functions must have the following signature::

 def mytask(system):
 request = system['request']
 registry = system['registry']
 # do stuff

 Additional keys may be added in the future: the single-arg signature
 ensures that task functions will be forward-compatible.

 In addition to the callback function, you can specify a schedule, using a
 cron-like syntax. For the time periods of ``min``, ``hour``, ``day``,
 ``month``, and ``dow`` (day of week), you can specify an integer, a set of
 integers, or the '*' wildcard character. The default argument is '*'. Hours
 are specified in 24-hour time.

 For example, this will run the task every day, at 2:00::

 config.add_cron_task(..., hour=2)

 This will run the task every day at 2:00, 10:00, and 18:00::

 config.add_cron_task(..., hour=[2, 10, 18])

 To run the task 'every 2 hours', you can use ``range()``::

 config.add_cron_task(..., hour=range(0, 24, 2))

 :param f:
 The function to execute. Task functions must have accept a single
 argument, which will be a ``system`` dict containing keys for the
 Pyramid ``request`` and ``registry``.

 :param min:
 Specify which minutes to run the task.

 :param hour:
 Specify which hours to run the task.

 :param day:
 Specify which days to run the task.

 :param month:
 Specify which months to run the task.

 :param dow:
 Specify which days of the week to run the task.
 """
 def register():
 registry = config.registry
 registry.setdefault('cron_tasks', [])
 registry['cron_tasks'].append(Task(f, min=min, hour=hour, day=day,
 month=month, dow=dow))
 # This discriminator prevents a task from being registered twice.
 config.action(('cron_task', f), register)

class CronView(object):
 """
 A view to allow the cron signal to be triggered by an HTTP request.
 This is convenient because it means that all the cron stuff happens with
 the webserver's permissions.
 """
 def __init__(self, request):
 self.request = request

 def __call__(self):
 request = self.request
 server_ip = socket.gethostbyname(request.host.split(':')[0])
 allowed = set(['127.0.0.1', '::1', server_ip])
 if request.remote_addr in allowed:
 registry = request.registry
 # This intentionally uses localtime, not UTC.
 t = datetime.now()
 log.warn('begin cron run')
 for task in registry['cron_tasks']:
 if task.check(t):
 task.go(request)
 log.warn('end cron run')
 return 'ok'
 else:
 return 'fail %s' % request.remote_addr

def includeme(config):
 config.add_route('cron', '/cron')
 config.add_view(CronView, route_name='cron', renderer='string')

 config.add_directive('add_cron_task', add_cron_task)

 © Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		pyramid_cron 0.4 »

 All modules for which code is available

		pyramid_cron

 © Copyright 2014, Scott Torborg.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

